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a b s t r a c t 

As two important expanded quantification rough set models, the probabilistic rough set 

(PRS) model and the graded rough set (GRS) model are used to measure relative quanti- 

tative information and absolute quantitative information between the equivalence classes 

and a basic concept, respectively. The decision-theoretic rough set (DTRS) model is a spe- 

cial case of PRS model which mainly utilizes the conditional probability to express relative 

quantification. Since the fuzzy concept is more general than classical concept in real life, 

how to make decision for a fuzzy concept using relative and absolute quantitative infor- 

mation is becoming a hot topic. In this paper, a couple of double-quantitative decision- 

theoretic rough fuzzy set (Dq-DTRFS) models based on logical conjunction and logical dis- 

junction operation are proposed. Furthermore, we discuss decision rules and the inner re- 

lationship between these two models. Then, an experiment in the medical diagnosis is 

studied to support the theories. Finally, to apply our methods to solve a pattern recogni- 

tion problem in big data, experiments on data sets downloaded from UCI are conducted to 

test the proposed models. In addition, we also offer a comparative analysis using two non- 

rough set based methods. From the results obtained, one finds that the proposed method 

is efficient for dealing with practical issues. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Rough set theory was first proposed by Pawlak [26] . It is an extension of the classical set theory and could be regarded

as a mathematical and soft computing tool to handle imprecision, vagueness and uncertainty in data analysis. It is currently

one of the most promising research directions in artificial intelligence. The classical Pawlak rough set model defines a pair

of lower and upper approximations, or equivalently three pair-wise disjoint positive, negative, and boundary regions, of a

given set by using the set-inclusion relation and the set non-empty overlapping condition [27] . The three regions can be

interpreted as three-way decisions consisting of acceptance, rejection and non-commitment [37–39] . The qualitative for-

mulation ensures that both positive and negative regions are error free, namely, there is no incorrect acceptance error, nor

incorrect rejection error. Whenever there is any doubt, a decision of non-commitment is made. Such a stringent formulation,

although making an analysis of a rough set model easier, may unnecessarily restrict its applicability and flexibility. In many

situations, we are willing to allow some degree of errors in order to make an acceptance or a rejection decision for more
∗ Corresponding author. Tel.: +85388972136. 
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objects. To solve the limitations that the relationship between equivalence classes and the basic set are strict and there are

no fault tolerance mechanisms, several proposals of generalized quantitative rough set models have been made by using a

graded set inclusion. The PRS model [40] and GRS model [41] are two important expanded models to measure relative and

absolute quantitative information between the equivalence class and a basic concept, respectively. 

In 1987, Wong and Ziarko [34,35] introduced probabilistic approximation space to rough set theory and then presented

the concept of PRS model. Subsequently, Yao et al. [42,43] proposed a more concrete PRS model called DTRS model. This

perspective was given to deal with the degree of overlapping of an equivalence class with the set to be approximated, and

an approach was presented to select the needed parameters in lower and upper approximations. As far as the probabilistic

approach to rough set theory is concerned, Pawlak and Skowron [28] , proposed a method to characterize a rough set by a

single membership function. By the definition of a rough membership function, elements in the same equivalence class have

the same degree of membership. The rough membership may be interpreted as the probability of any element belonging to

a set, given that the element belongs to an equivalence class. This interpretation led to proposing PRS model [40,42] . Greco

et al. [3] introduced a new generalization of the original definition of rough set and variable precision rough set models,

named the parameterized rough set model. They aimed at modeling data relationships expressed in terms of frequency

distribution rather than in terms of a full inclusion relation, which is used in the classical definition of rough set model.

PRS model extends the applied range of classical rough set model. The major change is the consideration regarding the

probability of an element being in a set to determine inclusion in approximation regions. Two probabilistic thresholds are

used to determine the division between the boundary-positive region and boundary-negative region. 

Decision making is an important issue in our daily life. Pedrycz [29] proposed the collaborative and linguistic mod-

els of decision making based on granular computing. Chen and Zhao [1] discussed the local reduction of decision system

with fuzzy rough set. Yao et al. [43] proposed the DTRS model by using the Bayesian decision theory. Herbet et al. studied

the game-theoretic rough set [5,6] . The DTRS model as a concrete PRS model, has aroused interests of many scholars and

obtained great achievements in recent years. Herbert and Yao [4,5] studied the combination of the DTRS model and the

game-theoretic rough set model. Qian et al. studied the multi-granulation decision-theoretic rough set model [30] . Li et al.

proposed the multi-granulation decision-theoretic rough set model in an ordered information system [22] . Li and Zhou

[11,12] presented a multi-perspective explanation of the DTRS model and discussed attribute reduction and its application

for the DTRS model. Jia et al. [7] also discussed the attribute reduction problem for the DTRS theory. Liu et al. [13–15] dis-

cussed multiple-category classification with DTRS model and its applications in management science. In [9,10,16] , both Li

and Lingras used the DTRS theory to discuss the clustering analysis. Yang [44] studied the multi-agent DTRS model. Li et al.

and Liang et al. [17,18] discussed information retrieval and filtering by using the DTRS theory. With the aid of multi-attribute

group decision making, Liang et al. proposed three-way decisions by extending DTRS model to the qualitative environment

[19] . Greco and Slowinski [4] combined the DTRS model with the dominance-based rough set model and then gave a new

generalized rough set model. Based on the basic idea of the DTRS model, Zhou [52] presented a new description of this

model. Ma and Sun [23,24] studied the DTRS theory over two universes based on the idea of the classical DTRS theory. Ju

et al. proposed a moderate attribute reduction approach in DTRS [8] . Sun et al. investigated the decision-theoretic rough

fuzzy set (DTRFS) model and application [32] . Zhang and Min applied three-way decision to recommender systems [46] . 

The GRS model based on graded modal logics exploring the relationships between rough set and modal logics was pro-

posed by Yao and Lin [41] . The GRS model primarily considered the absolute quantitative information regarding the basic

concepts and knowledge granules and was a generalization of the Pawlak model. The regions of the GRS model were ex-

tensions of grade approximations. Since the inclusion relation of the grade approximations did not hold any longer, positive

and negative regions, upper and lower boundary regions were naturally proposed. Obviously, regions of the GRS model also

extended the corresponding notions of the classical rough set model. Also Yao and Lin studied the graded rough set approx-

imations based on nested neighborhood systems. Xu et al. investigated the GRS model based on rough membership function

[36] . Liu et al. researched the GRS model based on two universes and its properties were discussed [20] . They classified the

universe more precisely and had their own logical meanings related to the grade quantitative index. In addition, GRS model

also considered absolute quantitative information between equivalence classes and the basic concept [49] . By defining the

upper approximation number, Wang et al. constructed the quantitative analysis for covering-based rough set model [33] .

Zhang and Miao constructed the double-quantitative approximation space, and then they proposed two double-quantitative

rough set models [47,48] . Later, they investigated the attribute reduction of the proposed rough set models [50,51] . 

As two useful expanded rough set models, DTRS and GRS can respectively reflect relative and absolute quantitative in-

formation about the degree of overlapping between equivalence classes and a basic set. The relative and absolute quanti-

tative information are two distinctive objective sides that describe approximate space, and each has its own virtues and

application environments, so none can be neglected. Relative quantitative information and absolute quantitative information

are two kinds of quantification methodologies in certain applications. Usually, most researchers prefer to use the relative

quantitative information [11,13,14,23–25,35,47] . However, the absolute quantitative information is more important than or

as important as the relative quantitative information in some specific fields or special cases. Many related examples can

be found in practice. Zhang investigated the double-quantitative rough set model of precision and grade using granular

computing [48] . Recently, Zhang and Miao did researches on an expanded double-quantitative model regarding probabilities

and grades and its hierarchical double-quantitative attribute [50,51] . Li discussed the double-quantitative decision-theoretic

rough set model based on assembling the lower and upper approximations of DTRS and GRS models [21] . However, there is

no research on incorporating fuzzy concept in double-quantitative models. 
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So far, none of these proposed double-quantitative rough set models could deal with problems with fuzzy concept. For

example, when dealing with the cold patients’ medical diagnosis, we find that some patients have a serious cold. So they

should be treated as cold patients. However, other patients may have a mild fever or headache, that is to say, they are not

necessarily catching a cold. They may need to do other examinations to determine whether they have other diseases or

not. The motivation of this study is to combine DTRS model with GRS model by using logical operators and incorporating

a fuzzy concept. We introduce the absolute quantitative information to DTRS model in order to significantly improve the

results obtained by DTRS model. We construct the rough set model which considers the relative and absolute quantitative

information about the degree of overlapping between equivalence classes and a concept set. Two new double-quantitative

decision-theoretic rough fuzzy set models ( 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS ) based on logical conjunction and logical disjunc-

tion operation are proposed, respectively. Moreover, some important properties of these models are investigated thoroughly.

After further studies to discuss decision rules and the inner relationship between these two models, we introduce an illus-

trative case study in the medical diagnosis to interpret and support the theories. Experiments on real-life big data sets are

proposed to demonstrate our model could deal with practical problems. 

The rest of this paper is organized as follows. In Section 2 , some basic concepts of rough set theory, GRS and DTRS

models, and some related necessary preliminaries are briefly introduced. We propose two kinds of Dq-DTRFS models, and

some important properties of these models are investigated in Section 3 . In Section 4 , comparisons and analyses of 
∧ 

-Dq-

DTRFS and 

∨ 

-Dq-DTRFS are done, we also discuss the basic relation among these two models and the classical rough set

model. In Section 5 , an illustrative example is presented. Then experiments about real-life big data sets are conducted and

analyzed in Section 6 . Finally, the paper ends with conclusions. 

2. Preliminaries 

In this section, some basic preliminaries and necessary concepts are briefly introduced. More details can be found in

[2,26,28,31,32,40–42,45] . 

Throughout this paper, we assume that the universe U is a non-empty finite set, and the class of all subsets of U is

denoted by P (U) , the class of all fuzzy subsets of U is denoted by F(U) , the complementary set of X is denoted by X 

c . 

2.1. Pawlak rough set 

For a non-empty set U , we call it the universe of discourse. The class of all subsets of U is denoted by P(U) . For X ∈ P(U) ,

the equivalence relation R in a Pawlak approximation space ( U , R ) partitions the universe U into disjoint subsets. Such

a partition of the universe is a quotient set of U and is denoted by U/R = { [ x ] R | x ∈ U} , where [ x ] R = { y ∈ U| (x, y ) ∈ R } is

the equivalence class containing x with respect to R . In the view of granular computing, equivalence classes are the basic

building blocks for the representation and approximation of any subset of the universe of discourse. Each equivalence class

may be viewed as a granule consisting of indistinguishable elements. In the basic concept X ∈ P(U) , one can characterize X

by a pair of upper and lower approximations which are 

R (X ) = { x ∈ U | [ x ] R ∩ X � = ∅} = ∪{ [ x ] R | [ x ] R ∩ X � = ∅};
R (X ) = { x ∈ U | [ x ] R ⊆ X } = ∪{ [ x ] R | [ x ] R ⊆ X } . 

Here, pos (X ) = R (X ) , neg(X ) = ( R (X )) c , bn (X ) = R (X ) − R (X ) are called the positive region, negative region, and boundary

region of X , respectively [26] . 

2.2. Fuzzy set 

Zadeh introduced the fuzzy set [45] in which a fuzzy subset ˜ A of U is defined as a function assigning to each element x

of U . The value ˜ A (x ) ∈ [0 , 1] and 

˜ A (x ) is referred to as the membership degree of x to the fuzzy set ˜ A . Let F(U) denotes all

fuzzy subsets of U . For any fuzzy concept ˜ A , ̃  B ∈ F(U) , we say that ˜ A is contained in 

˜ B , denoted by ˜ A ⊆ ˜ B , if ˜ A (x ) ≤ ˜ B (x ) for

all x ∈ U , we say that ˜ A = ̃

 B if and only if ˜ A ⊆ ˜ B and 

˜ A ⊇ ˜ B , given that ˜ A , ̃  B ∈ F(U) and ∀ x ∈ U . The basic computing rules of

fuzzy set are described as follows. 

( ̃  A ∪ ̃

 B )(x ) = max { ̃  A (x ) , ̃  B (x ) } = ̃

 A (x ) ∨ ̃

 B (x ) ;
( ̃  A ∩ ̃

 B )(x ) = min { ̃  A (x ) , ̃  B (x ) } = ̃

 A (x ) ∧ ̃

 B (x ) ;
˜ A 

c (x ) = 1 − ˜ A (x ) . 

Here ”∨ ” and ”∧ ” are the maximum operation and minimum operation, respectively. The ˜ A 

c is the complementary set of˜ A . In [31] , Sarkar proposed a rough-fuzzy membership function for any two fuzzy sets( ̃  A and 

˜ B ) of the universe of discourse

as: 

μ˜ A = 

| ̃  A ∪ ̃

 B | 
| ̃  B | , x ∈ U. 

Here | ̃  A | = �˜ A (x ) , x ∈ U . It is useful to construct the decision-theoretic rough fuzzy set model which is very important in

our study. 
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2.3. Graded rough set 

Yao and Lin [41] explored the relationships between rough set theory and modal logics and proposed the GRS model

based on graded modal logics. The GRS model primarily considers the absolute quantitative information regarding the basic

concept and knowledge granules and is a generalization of the Pawlak rough set model. In the GRS model, k ∈ N is a

non-negative integer called “grade” and the following approximations are made: 

R k (X ) = { x ∈ U | | [ x ] R ∩ X | > k } = ∪{ [ x ] R | | [ x ] R ∩ X | > k };
R k (X ) = { x ∈ U | | [ x ] R | − | [ x ] R ∩ X | ≤ k } = ∪{ [ x ] R | | [ x ] R | − | [ x ] R ∩ X | ≤ k } = ∪{ [ x ] R | | [ x ] R ∩ X 

c | � k } . 
These two approximations are called grade k upper and lower approximations of X . Where | · | stands for the cardinality

of the objects in set, and X 

c stands for the complementary set of X . If R k (X ) = R k (X ) , then X is called a definable set by

grade k ; otherwise, X is called a rough set by grade k . R k and R k are called grade k upper and lower approximation operators,

respectively. Here, R k (X ) is the union of the equivalence classes which satisfy the cardinality of the intersection of X and

equivalence classes to exceed parameter k . R k ( X ) is the union of the equivalence classes which satisfy the cardinality of the

intersection of the complementary set of X and equivalence classes not to exceed parameter k . 

Especially, if k = 0 , then R k (X ) = R (X ) , R k (X ) = R (X ) . Therefore, the classical rough set model is a special case of GRS

model. It must be pointed out that the lower approximation included in the upper approximation does not hold usually. So,

the boundary region could be defined as union of lower and upper boundary regions. Accordingly, we can get the following

regions. 

pos k (X ) = R k (X ) ∩ R k (X ) ;
neg k (X ) = ( R k (X ) ∪ R k (X )) c ;
Ubn k (X ) = R k (X ) − R k (X ) ;
Lbn k (X ) = R k (X ) − R k (X ) ;
bn k (X ) = Ubn k (X ) ∪ Lbn k (X ) = R k (X ) � R k (X ) . 

Here pos k ( X ), neg k ( X ), Ubn k ( X ), Lbn k ( X ) and bn k ( X ) are called grade k positive region, negative region, upper boundary

region, lower boundary region, and boundary region of X , respectively. The � is the symmetric difference of the upper and

lower approximation sets. 

Moreover, if the set X is generalized to a fuzzy set ˜ A ∈ F(U) , the GRS model will be generalized to graded rough fuzzy

set (GRFS) model. The following definition can be got. 

R k ( ̃
 A ) = { x ∈ U | �y ∈ [ x ] R ̃

 A (y ) > k } = ∪{ [ x ] R | �y ∈ [ x ] R ̃
 A (y ) > k };

R k ( ̃
 A ) = { x ∈ U | �y ∈ [ x ] R (1 − ˜ A (y )) ≤ k } = ∪{ [ x ] R | �y ∈ [ x ] R (1 − ˜ A (y )) ≤ k } . 

According to the above definition, the rough regions can be calculated similar to previous one. 

2.4. Decision-theoretic rough set 

In [28] Pawlak and Skowron suggested using a rough membership function to redefine the two approximations and the

rough membership function μR is defined by: 

μR (x ) = P (X | [ x ] R ) = 

| [ x ] R ∩ X | 
| [ x ] R | . 

Bayesian decision procedure mainly deals with making decisions have minimum risk or cost under probabilistic uncer-

tainty. The following processes can be found in [2] . In the Bayesian decision procedure, a finite set of states can be written

as � = { ω 1 , ω 2 , . . . , ω s } , and a finite set of r possible actions can be denoted by A = { a 1 , a 2 , . . . , a r } . Let P ( ω j | x ) be the con-

ditional probability of an object x being in state ω j given that the object is described by x . Let λ( a i | ω j ) denote the loss or

the cost for taking action a i when the state is ω j . The expected loss function associated with taking action a i is given by 

R (a i | x ) = 

s ∑ 

j=1 

λ(a i | ω j ) P (ω j | x ) . 

With respect to the membership of an object in X , we have a set of two states and a set of three actions for each state.

The set of states is given by � = { X, X c } indicating that an element is in X and not in X , respectively. The set of actions

with respect to a state is given by A = { a P , a B , a N } , where P , B and N represent the three actions in deciding x ∈ pos ( X ), x ∈
bn ( X ), and x ∈ neg ( X ), respectively. The loss function regarding the risk or the cost of actions in different states is given in

the following: 
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Table 1 

The loss function. 

X ( P ) X c ( N ) 

a P λPP λPN 

a B λBP λBN 

a N λNP λNN 

 

 

 

 

 

 

 

 

 

 

 

In Table 1 , λPP , λBP and λNP denote the losses incurred for taking actions a P , a B and a N , respectively, when an object

belongs to X . And λPN , λBN and λNN denote the losses incurred for taking the same actions when the object does not belong

to X . The expected loss R ( a i |[ x ] R ) associated with taking the individual actions can be expressed as [42] . 

R (a P | [ x ] R ) = λPP P (X | [ x ] R ) + λPN P (X 

C | [ x ] R ) ;

R (a B | [ x ] R ) = λBP P (X | [ x ] R ) + λBN P (X 

C | [ x ] R ) ;

R (a N | [ x ] R ) = λNP P (X | [ x ] R ) + λNN P (X 

C | [ x ] R ) . 
When λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , the Bayesian decision procedure leads to the following minimum-risk

decision rules: 

( P ) If P ( X |[ x ] R ) ≥ γ and P ( X |[ x ] R ) ≥ α, decide pos ( X ); 

( N ) If P ( X |[ x ] R ) ≤ β and P ( X |[ x ] R ) ≤ γ , decide neg ( X ); 

( B ) If β ≤ P ( X |[ x ] R ) ≤ α, decide bn ( X ). 

Where the parameters α, β and γ are defined as: 

α = 

λPN − λNN 

(λPN − λNN ) + (λNP − λPP ) 
;

β = 

λNN − λBN 

(λNN − λBN ) + (λBP − λNP ) 
;

γ = 

λPN − λBN 

(λPN − λBN ) + (λBP − λPP ) 
. 

If a loss function further satisfies the condition: (λPN − λNN )(λBP − λNP ) ≥ (λNN − λBN )(λNP − λPP ) , then we can get α ≥
γ ≥ β . 

When α > β , we have α > γ > β . The DTRS has the decision rules: 

( P ) If P ( X |[ x ] R ) ≥ α, decide pos ( X ); 

( N ) If P ( X |[ x ] R ) ≤ β , decide neg ( X ); 

( B ) If β < P ( X |[ x ] R ) < α, decide bn ( X ). 

Using these three decision rules, we get the probabilistic approximations, namely the upper and lower approximations

of the DTRS model: 

R (α,β) (X ) = { x ∈ U | P (X | [ x ] R ) > β} = ∪{ [ x ] R | P (X | [ x ] R ) > β};
R (α,β) (X ) = { x ∈ U | P (X | [ x ] R ) ≥ α} = ∪{ [ x ] R | P (X | [ x ] R ) ≥ α} . 

If R (α,β) (X ) = R (α,β) (X ) , then X is a definable set, otherwise X is a rough set. Here, pos (α,β) (X ) = R (α,β) (X ) , neg (α,β) (X ) =
( R (α,β) (X )) c , bn (α,β) (X ) = R (α,β) (X ) − R (α,β) (X ) are the positive region, negative region and boundary region, respectively. 

Sun et al. introduced the PRS model and its extensions in [32] . Let U be a non-empty finite universe and R be an equiv-

alence relation of U and P be the probabilistic measure. For any ˜ A ∈ F(U) , P ( ̃  A | [ x ] R ) is called the conditional probability of

fuzzy event ˜ A given the description [ x ] R . The P ( ̃  A | [ x ] R ) is defined as follows: 

P ( ̃  A | [ x ] R ) = 

�y ∈ [ x ] R ̃
 A (y ) 

| [ x ] R | , x ∈ U. 

The P ( ̃  A | [ x ] R ) can also be explained as the probability that a randomly selected object x ∈ U belongs to the fuzzy concept˜ A given the description [ x ] R . Based on the above conditional probability of fuzzy event ˜ A , the upper and lower approxima-

tions of fuzzy set ˜ A with respect to α and β are defined as follows: 

R (α,β) ( ̃
 A ) = { x ∈ U| P ( ̃  A | [ x ] R ) > β} = ∪{ [ x ] R | P ( ̃  A | [ x ] R ) > β};

R (α,β) ( ̃
 A ) = { x ∈ U| P ( ̃  A | [ x ] R ) ≥ α} = ∪{ [ x ] R | P ( ̃  A | [ x ] R ) ≥ α} . 

According to the definitions, it is easy to get that the upper and lower approximations are the binary operators from

F(U) → P(U) , where the F(U) stands for all fuzzy set of U and P(U) means the power set of U . At this time, the DTRS

model will be generalized to the DTRFS model. 
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DTRS model based on Bayesian decision principle was initially proposed by Yao [42] . The conditional probability in this

model is determined by the rough membership functions P (X| [ x ] R ) = | [ x ] R ∩ X| / | [ x ] R | , which implies the relative quantitative

information. The decision-theoretic approximations are made with 0 ≤ β < α ≤ 1. The parameters α and β were obtained

from the losses of the Bayesian decision procedure, which are related to the relative quantitative information. The loss

function can be considered as the standard threshold values, which are not abstract notions. However, they have an intuitive

interpretation. One can easily interpret and measure the loss or the cost in a real application. 

3. Double-quantitative decision-theoretic rough fuzzy set models 

Based on previous introduction, here we will discuss a fuzzy concept which comprehensively describes relative and ab-

solute quantitative information. We will further discuss the composite study of DTRFS and GRFS models based on logical

operation. Based on the knowledge that logical conjunction and logical disjunction operation are a pair of symmetric op-

erators, we will construct two expanded Dq-DTRFS models by using logical conjunction and logical disjunction operation,

respectively. 

3.1. Logical conjunction double-quantitative decision-theoretic rough fuzzy set ( 
∧ 

-Dq-DTRFS) model 

In many scientific fields, not only the relative quantitative information should be considered, but also the absolute quan-

titative information should be researched by considering the upper and lower approximations at the same time. By taking

the absolute quantitative information into consideration in the Bayesian decision procedure in the DTRFS model, we can get

a kind of Dq-DTRFS model based on logical conjunction. 

Definition 3.1. Let I = (U, R ) be an approximation space, and U = { x 1 , x 2 , . . . , x n } be a universe. For any ˜ A ∈ F(U) , 0 ≤ β <

α < 1, k ∈ N and x ∈ U , the logical conjunction double-quantitative upper and lower approximations of fuzzy set ˜ A based

on the relation R are defined as: 

R (α,β) ∧ k ( ̃  A ) = { x ∈ U | P ( ̃  A | [ x ] R ) > β, �y ∈ [ x ] R ̃
 A (y ) > k };

R (α,β) ∧ k ( ̃  A ) = { x ∈ U | P ( ̃  A | [ x ] R ) ≥ α, �y ∈ [ x ] R (1 − ˜ A (y )) ≤ k } . 
Based on these operators, we determine a rough set model called the logical conjunction double-quantitative decision-

theoretic rough fuzzy set ( 
∧ 

-Dq-DTRFS) model, which is also denoted by (U, R (α,β) ∧ k ( ̃  A ) , R (α,β) ∧ k ( ̃  A ) ). The positive region,

negative region, upper boundary region, lower boundary region and boundary region are presented as follows: 

pos ∧ k ( ̃
 A ) = R (α,β) ∧ k ( ̃  A ) ∩ R (α,β) ∧ k ( ̃  A ) ;

neg ∧ k ( ̃
 A ) = ( R (α,β) ∧ k ( ̃  A ) ∪ R (α,β) ∧ k ( ̃  A )) c ;

Ubn 

∧ 
k ( ̃

 A ) = R (α,β) ∧ k ( ̃  A ) − R (α,β) ∧ k ( ̃  A ) ;
Lbn 

∧ 
k ( ̃

 A ) = R (α,β) ∧ k ( ̃  A ) − R (α,β) ∧ k ( ̃  A ) ;
bn 

∧ 
k ( ̃

 A ) = Ubn 

∧ 
k ( ̃

 A ) ∪ Lbn 

∧ 
k ( ̃

 A ) = R (α,β) ∧ k ( ̃  A ) � R (α,β) ∧ k ( ̃  A ) . 

According to the definition of P ( ̃  A | [ x ] R ) and the above definition, one can get the following theorem. 

Theorem 3.1. The logical conjunction double-quantitative upper and lower approximations of fuzzy set ˜ A based on the relation R

can also be defined as: 

R (α,β) ∧ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > max (k, β| [ x ] R | ) };

R (α,β) ∧ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > max (| [ x ] R | − k, α| [ x ] R | ) } . 

Proof. It can be proved directly from the definition of P ( ̃  A | [ x ] R ) and Definition 3.1 . �

Corollary 3.1. If ˜ A is degenerated into a classical set A ⊆U , then, 

R (α,β) ∧ k (A ) = { x ∈ U | P (A | [ x ] R ) > β, | [ x ] R ∩ A | > k } = R (α,β) (A ) ∩ R k (A ) ;
R (α,β) ∧ k (A ) = { x ∈ U | P (A | [ x ] R ) ≥ α, | [ x ] R | − | [ x ] R ∩ A | ≤ k } = R (α,β) (A ) ∩ R k (A ) . 

Furthermore, these parameters in their special case with α = 1 , β = 0 and k = 0 , the 
∧ 

-Dq-DTRFS model will be degen-

erated into Pawlak rough set R (α,β) ∧ k (A ) = R (A ) , and R (α,β) ∧ k (A ) = R (A ) . It means the model is a directional expansion of

the Pawlak model. 

The relative information similarly complements the absolute description and can be used to improve the GRS model. The

sharp contrast between the relative and grade environments is typical of double quantification applications. For example,

if the relative quantification varies over a small range while the grade changes significantly, then the double quantification

can play a significant role. Based on the descriptions of the regions, the following decision rules can be obtained. 
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( P ∧ ) If k ≤ β|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≥ | [ x ] R | − k, decide pos ∧ 

k 
( ̃  A ) ; 

( P ∧ ) If β|[ x ] R | < k < α|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≥ α| [ x ] R | , decide pos ∧ 

k 
( ̃  A ) ; 

( P ∧ ) If α|[ x ] R | ≤ k , �y ∈ [ x ] R ̃
 A (y ) > k, decide pos ∧ 

k 
( ̃  A ) ; 

( N 

∧ ) If k ≤ β|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≤ β| [ x ] R | , decide neg ∧ 

k 
( ̃  A ) ; 

( N 

∧ ) If β|[ x ] R | < k < α|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≤ k, decide neg ∧ 

k 
( ̃  A ) ; 

( N 

∧ ) If α|[ x ] R | ≤ k , �y ∈ [ x ] R ̃
 A (y ) < α| [ x ] R | , decide neg ∧ 

k 
( ̃  A ) ; 

( UB ∧ ) If k ≤ β|[ x ] R |, β| [ x ] R | < �y ∈ [ x ] R ̃
 A (y ) < | [ x ] R | − k, decide Ubn ∧ 

k 
( ̃  A ) ; 

( UB ∧ ) If β|[ x ] R | < k < α|[ x ] R |, k < �y ∈ [ x ] R < α| [ x ] R | , decide Ubn ∧ 
k 
( ̃  A ) ; 

( LB ∧ ) If α|[ x ] R | ≤ k , α| [ x ] R | ≤ �y ∈ [ x ] R ̃
 A (y ) ≤ k, decide Lbn ∧ 

k 
( ̃  A ) . 

With these rules, one can make decisions based on the following positive, upper boundary, lower boundary and negative

rules. For 
∧ 

-Dq-DTRFS model, we have the following decisions: 

Des ([ x ] R ) → Des P ∧ 
k 
( ̃  A ) , for x ∈ pos ∧ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des N ∧ 
k 
( ̃  A ) , for x ∈ neg ∧ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des UB ∧ 
k 
( ̃  A ) , for x ∈ Ubn ∧ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des LB ∧ 
k 
( ̃  A ) , for x ∈ Lbn ∧ 

k 
( ̃  A ) . 

3.2. Logical disjunction double-quantitative decision-theoretic rough fuzzy set ( 
∨ 

-Dq-DTRFS) model 

Based on the previous discussion, we find that sometimes the relative quantitative information and the absolute quanti-

tative information should not be considered at the same time. We may just need to satisfy at least one of these conditions.

Definition 3.2. Let I = (U, R ) be an approximation space, and U = { x 1 , x 2 , . . . , x n } be a universe. For any ˜ A ∈ F(U) , 0 ≤ β <

α < 1 and x ∈ U , the logical disjunction double-quantitative upper and lower approximations of fuzzy set ˜ A based on the

relation R are defined as: 

R (α,β) ∨ k ( ̃  A ) = { x ∈ U | P ( ̃  A | [ x ] R ) > β, or �y ∈ [ x ] R ̃
 A (y ) > k };

R (α,β) ∨ k ( ̃  A ) = { x ∈ U | P ( ̃  A | [ x ] R ) ≥ α, or �y ∈ [ x ] R (1 − ˜ A (y )) ≤ k } . 
Similar to the previous rough set model, the regions of 

∨ 

-Dq-DTRFS model can be described in the same way. 

pos ∨ k ( ̃
 A ) = R (α,β) ∨ k ( ̃  A ) ∩ R (α,β) ∨ k ( ̃  A ) ;

neg ∨ k ( ̃
 A ) = ( R (α,β) ∨ k ( ̃  A ) ∪ R (α,β) ∨ k ( ̃  A )) c ;

Ubn 

∨ 
k ( ̃

 A ) = R (α,β) ∨ k ( ̃  A ) − R (α,β) ∨ k ( ̃  A ) ;
Lbn 

∨ 
k ( ̃

 A ) = R (α,β) ∨ k ( ̃  A ) − R (α,β) ∨ k ( ̃  A ) ;
bn 

∨ 
k ( ̃

 A ) = Ubn 

∨ 
k ( ̃

 A ) ∪ Lbn 

∨ 
k ( ̃

 A ) = R (α,β) ∨ k ( ̃  A ) � R (α,β) ∨ k ( ̃  A ) . 

According to the definition of P ( ̃  A | [ x ] R ) and the above definition, one can get the following theorem. 

Theorem 3.2. The logical disjunction double-quantitative upper and lower approximations of fuzzy set ˜ A based on the relation R

can also be defined as: 

R (α,β) ∨ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > min (k, β| [ x ] R | ) };

R (α,β) ∨ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > min (| [ x ] R | − k, α| [ x ] R | ) } . 

Proof. It can easily be verified by the Definition 3.2 and the definition of P ( ̃  A | [ x ] R ) . �

Here, the second type of Dq-DTRFS model was established based on the logical disjunction. In this model the relative and

absolute information are considered at the same time. The lower and upper approximations in Definition 3.2 must contain

at least one quantification. 

Corollary 3.2. Similar to the first model, if ˜ A is degenerated into a classical set A ⊆U , then, 

R (α,β) ∨ k (A ) = { x ∈ U | P (A | [ x ] R ) > β, or | [ x ] R ∩ A | > k } = R (α,β) (A ) ∪ R k (A ) ;
R (α,β) ∨ k (A ) = { x ∈ U | P (A | [ x ] R ) ≥ α, or | [ x ] R | − | [ x ] R ∩ A | ≤ k } = R (α,β) (A ) ∪ R k (A ) . 

Furthermore, these parameters in their special case with α = 1 , β = 0 and k = 0 , then the 
∨ 

-Dq-DTRFS model will be

degenerated into Pawlak rough set R (α,β) ∨ k (A ) = R (A ) , and R (α,β) ∨ k (A ) = R (A ) . It means the model is a directional expansion

of the Pawlak model, too. 
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Table 2 

Comparison decision rules of 
∧ 

-Dq-DTRFS and 
∨ 

-Dq-DTRFS models. 

Value 
∧ 

-Dq-DTRFS 
∨ 

-Dq-DTRFS Decision 

α|[ x ] R | ≤ k �y ∈ [ x ] R ̃
 A (y ) > k �y ∈ [ x ] R ̃

 A (y ) > β| [ x ] R | pos k ( ̃
 A ) 

α|[ x ] R | ≤ k �y ∈ [ x ] R ̃
 A (y ) < α| [ x ] R | �y ∈ [ x ] R ̃

 A (y ) < | [ x ] R | − k neg k ( ̃
 A ) 

α|[ x ] R | ≤ k α| [ x ] R | ≤ �y ∈ [ x ] R ̃
 A (y ) ≤ k | [ x ] R | − k ≤ �y ∈ [ x ] R ̃

 A (y ) ≤ β| [ x ] R | Lbn k ( ̃
 A ) 

k ≤ β|[ x ] R | �y ∈ [ x ] R ̃
 A (y ) ≥ | [ x ] R | − k �y ∈ [ x ] R ̃

 A (y ) ≥ α| [ x ] R | pos k ( ̃
 A ) 

k ≤ β|[ x ] R | �y ∈ [ x ] R ̃
 A (y ) ≤ β| [ x ] R | �y ∈ [ x ] R ̃

 A (y ) ≤ k neg k ( ̃
 A ) 

k ≤ β|[ x ] R | β| [ x ] R | < �y ∈ [ x ] R ̃
 A (y ) < | [ x ] R | − k k < �y ∈ [ x ] R ̃

 A (y ) < α| [ x ] R | Ubn k ( ̃
 A ) 

β|[ x ] R | < k < α|[ x ] R | �y ∈ [ x ] R ̃
 A (y ) ≥ α| [ x ] R | �y ∈ [ x ] R ̃

 A (y ) ≥ | [ x ] R | − k pos k ( ̃
 A ) 

β|[ x ] R | < k < α|[ x ] R | �y ∈ [ x ] R ̃
 A (y ) ≤ k �y ∈ [ x ] R ̃

 A (y ) ≤ β| [ x ] R | neg k ( ̃
 A ) 

β|[ x ] R | < k < α|[ x ] R | k < �y ∈ [ x ] R < α| [ x ] R | β| [ x ] R | < �y ∈ [ x ] R < | [ x ] R | − k Ubn k ( ̃
 A ) 

 

 

 

 

 

 

 

 

 

 

 

U  

 

 

 

According to the constructed model 
∨ 

-Dq-DTRFS, the following decision rules can be obtained. 

( P ∨ ) If k ≤ β|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≥ α| [ x ] R | , decide pos ∨ 

k 
( ̃  A ) ; 

( P ∨ ) If β|[ x ] R | < k < α|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≥ | [ x ] R | − k, decide pos ∨ 

k 
( ̃  A ) ; 

( P ∨ ) If α|[ x ] R | ≤ k , �y ∈ [ x ] R ̃
 A (y ) > β| [ x ] R | , decide pos ∨ 

k 
( ̃  A ) ; 

( N 

∨ ) If k ≤ β|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≤ k, decide neg ∨ 

k 
( ̃  A ) ; 

( N 

∨ ) If β|[ x ] R | < k < α|[ x ] R |, �y ∈ [ x ] R ̃
 A (y ) ≤ β| [ x ] R | , decide neg ∨ 

k 
( ̃  A ) ; 

( N 

∨ ) If α|[ x ] R | ≤ k , �y ∈ [ x ] R ̃
 A (y ) < | [ x ] R | − k, decide neg ∨ 

k 
( ̃  A ) ; 

( UB ∨ ) If k ≤ β|[ x ] R |, k < �y ∈ [ x ] R ̃
 A (y ) < α| [ x ] R | , decide Ubn ∨ 

k 
( ̃  A ) ; 

( UB ∨ ) If β|[ x ] R | < k < α|[ x ] R |, β| [ x ] R | < �y ∈ [ x ] R < | [ x ] R | − k, decide Ubn ∨ 
k 
( ̃  A ) ; 

( LB ∨ ) If α|[ x ] R | ≤ k , | [ x ] R | − k ≤ �y ∈ [ x ] R ̃
 A (y ) ≤ β| [ x ] R | , decide Lbn ∨ 

k 
( ̃  A ) . 

With these decision rules, one can make decisions based on the following positive, upper boundary, lower boundary and

negative rules. For 
∨ 

-Dq-DTRFS model, we have the following decisions: 

Des ([ x ] R ) → Des P ∨ 
k 
( ̃  A ) , for x ∈ pos ∨ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des N ∨ 
k 
( ̃  A ) , for x ∈ neg ∨ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des UB ∨ 
k 
( ̃  A ) , for x ∈ Ubn ∨ 

k 
( ̃  A ) ; 

Des ([ x ] R ) → Des LB ∨ 
k 
( ̃  A ) , for x ∈ Lbn ∨ 

k 
( ̃  A ) . 

4. Comparisons and analyses of 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models 

To complete our previous work, in this paper we build two Dq-DTRFS models and give their basic description. In this sec-

tion, we will discuss the relationship between 

∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS and more analyses will be provided. According

to the definitions of these two Dq-DTRFS models, we have shown that the expressions are similar. They are constructed on

different logical conjunction and disjunction. The related theorems are held. In the last section, the decision rules of these

two Dq-DTRFS models are presented and their comparisons are shown in Table 2 . 

There are serval parameters in models where α, β are conditional probability and k is a grade. The conditional probability

and the grade represent the levels and grade of tolerance in making incorrect decisions. When the conditional probability

is too low for acceptance (below α) and at the same time too high for rejection (above β), we will discuss the influence on

decisions based on different parameter values. 

Case 1. α + β = 1 . 

Theorem 4.1. For any ˜ A ∈ F(U) , 0 ≤ β < α < 1, k ∈ N and x ∈ U , if α + β = 1 so, α = 1 − β then, the following theorem holds

between 
∧ 

-Dq-DTRFS and 
∨ 

-Dq-DTRFS models. 

R (α,β) ∧ k ( ̃  A 

c ) = ( R (α,β) ∨ k ( ̃  A )) c ;
R (α,β) ∧ k ( ̃  A 

c ) = ( R (α,β) ∨ k ( ̃  A )) c . 

Proof. According to the Theorem 3.1 , one can get the left hand side of first part that R (α,β) ∧ k ( ̃  A 

c ) = R (α,β) ( ̃
 A 

c ) ∩ R k ( ̃
 A 

c ) =
{ x ∈ U | P ( ̃  A 

c | [ x ] R ) > β} ∩ { x ∈ U | �y ∈ [ x ] R ̃
 A 

c (y ) > k } = { x | �y ∈ [ x ] R (1 − ˜ A (y )) > β| [ x ] R |} ∩ { x ∈ U | �y ∈ [ x ] R (1 − ˜ A (y )) > k } = { x ∈
 | �y ∈ [ x ] R (1 − ˜ A (y )) > max (β| [ x ] R | , k ) } ; for the right hand side, one can get ( R (α,β) ∨ k ( ̃  A )) c = [ R (α,β) ( ̃

 A ) ∪ R k ( ̃
 A )] c = { x ∈ U |

�y ∈ [ x ] R ̃
 A (y ) < α| [ x ] R |} ∩ { x ∈ U | �y ∈ [ x ] R (1 − ˜ A (y )) > k } = { x ∈ U | | [ x ] R | − �y ∈ [ x ] R ̃

 A (y ) > | [ x ] R | − α| [ x ] R |} ∩ { x ∈ U | �y ∈ [ x ] R (1 −
˜ A (y )) > k } = { x | �y ∈ [ x ] R (1 − ˜ A (y )) > β| [ x ] R |} ∩ { x ∈ U | �y ∈ [ x ] R (1 − ˜ A (y )) > k } = { x ∈ U | �y ∈ [ x ] R (1 − ˜ A (y )) > max (β| [ x ] R | , k ) } .
So, the first part has been proved and the second part of the theorem can be verified similarly. �

If a loss function satisfies λPP ≤ λBP < λNP , λNN ≤ λBN < λPN and (λPN − λNN )(λBP − λNP ) > (λNN − λBN )(λNP − λPP ) , we

have α > β . Thus, β < 0.5 and α > 0.5 hold, from the fact that α = 1 − β and β = 1 − α. At the same time, for the k , it
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Table 3 

Initial medical data. 

Patient Fever Headache ˜ d Patient Fever Headache ˜ d 

x 1 0 0 0.1 x 19 0 0 0 

x 2 1 1 0.4 x 20 1 2 0.8 

x 3 0 2 0.6 x 21 2 0 0.8 

x 4 2 1 0.8 x 22 0 0 0 

x 5 1 0 0.3 x 23 2 1 0.6 

x 6 2 2 1.0 x 24 1 2 0.7 

x 7 0 0 0.1 x 25 0 2 0.5 

x 8 1 2 0.7 x 26 2 2 1.0 

x 9 2 2 0.9 x 27 1 1 0.2 

x 10 1 1 0.5 x 28 2 0 0.4 

x 11 1 2 1.0 x 29 2 1 0.5 

x 12 2 0 0.5 x 30 0 0 0 

x 13 0 0 0 x 31 1 2 0.7 

x 14 2 1 0.8 x 32 0 1 0.1 

x 15 0 1 0.3 x 33 2 1 0.7 

x 16 1 1 0.5 x 34 1 1 0.6 

x 17 0 2 0.5 x 35 0 0 0.1 

x 18 2 1 0.8 x 36 2 0 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

follows that for α + β = 1 , a loss function must satisfy λPP ≤ λBP < λNP , λNN ≤ λBN < λPN and the condition: 

(λPN − λNN ) 

(λNP − λPP ) 
= 

(λBP − λNP ) 

(λNN − λBN ) 
. 

The classical rough set model is obtained by letting α = 1 , β = 0 and k = 0 , which satisfies the condition α + β = 1 .

Thus the classical rough set model is a special case of the Case 1. It should be pointed out that the two models proposed

by Zhang et al. in [38] is also a special case of Case 1 in this section. The reason is that when α + β = 1 , the DTRS model

can be degenerated into variable precision rough set model, which is investigated in [48] . 

Case 2. α + β < 1 . 

The condition α > β , β < 0.5 holds for Case 2. A loss function must satisfy the condition: 

(λNP − λPP ) 

(λPN − λNN ) 
< 

(λBP − λNP ) 

(λNN − λBN ) 
. 

For Case 2, we choose an accepted region pos ( ̃  A ) ∨ in 

∨ 

-Dq-DTRFS model which is described as { x | k/α < | [ x ] R | <
k/β, �y ∈ [ x ] R ̃

 A (y ) ≥ | [ x ] R | − k } namely, { x | k/α < | [ x ] R | < k/β, �y ∈ [ x ] R ̃
 A 

c (y ) < | [ x ] R | − k } then, we have { x | k/α < | [ x ] R | <
k/β, �y ∈ [ x ] R ̃

 A (y ) > k } . That means it is part of Ubn ∧ in 

∧ 

-Dq-DTRFS model. That is to say, from the accepted region of

one class in the kind of 
∨ 

-Dq-DTRFS model, we can not decide where to include it in 

∧ 

-Dq-DTRFS model. It is just possible

to include it in accepted region 

∧ 

-Dq-DTRFS model. 

Case 3. α + β > 1 . 

The condition α > β , α > 0.5 holds for Case 3. A loss function must satisfy the condition: 

(λPN − λNN ) 

(λNP − λPP ) 
> 

(λNN − λBN ) 

(λBP − λNP ) 
. 

For case 3, we choose any x in rejection of 
∧ 

-Dq-DTRFS model as { x | α| [ x ] R | ≤ k, �y ∈ [ x ] R ̃
 A (y ) < α| [ x ] R |} to be equivalent

to { x | α| [ x ] R | ≤ k, �y ∈ [ x ] R ̃
 A 

c (y ) ≥ α| [ x ] R |} namely, { x | α| [ x ] R | ≤ k, | [ x ] R | − �y ∈ [ x ] R ̃
 A (y ) ≥ α| [ x ] R |} then, we have { x | α| [ x ] R | ≤

k, �y ∈ [ x ] R ̃
 A (y ) ≤ (1 − α) | [ x ] R |} . Because α > 0 . 5 ⇒ 1 − α < 0 . 5 < α then, { x | α| [ x ] R | ≤ k, �y ∈ [ x ] R ̃

 A (y ) < α| [ x ] R |} . That is to say,

from the acceptance of one class in a kind of 
∧ 

-Dq-DTRFS model, we can compute the acceptance class in the 
∨ 

-Dq-DTRFS

model. That means the acceptance condition is more strict than the first model. 

5. Case study 

In real life, patients go to a doctor when they have a headache or a fever. The doctor may decide the degree of coldness

(flu) of the patients based on the degree of fever and the degree of headache of the patients. In this section, the medical

example [21,49] is introduced to illustrate the utilization of our two 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models by comparing

with DTRFS and GRFS models. Let I = (U, C ∪ ̃

 d ) be a decision fuzzy table, where U is composed of 36 patients, and the

condition and decision attributes are f e v er, headache and hea v y cold, respectively. Let R denote the equivalence relation on

the condition attributes. Based on the measured medical data in Table 3 , we provide the statistical results of the patient

classes in Table 4 , where ( i , j ) ( i , j ∈ [0, 2]) denotes the rank of condition attributes and X denotes the cold patient set. 

Based on the condition attributes Fever and Headache , the universe is classified into nine classes. From Table 3 , the fuzzy

decision attribute is represented as ˜ d = (0 . 1 , 0 . 4 , 0 . 6 , · · · , 0 . 6 , 0 . 1 , 0 . 5) . In the following, we will discuss the limitations of

DTRFS and GRFS models as well as the advantages of our two models proposed in the paper. 
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Table 4 

Statistical results of the patient classes. 

( i , j ) [ x ] R |[ x ] R | �y ∈ [ x ] R ̃
 d (y ) P( ̃  d | [ x ] R ) �y ∈ [ x ] R (1 − ˜ d (y )) 

(0, 0) x 1, 7, 13, 19, 22, 30, 35 7 0.3 0.04 6.7 

(0, 1) x 15, 32 2 0.4 0.20 1.6 

(0, 2) x 3, 17, 25 3 1.6 0.53 1.4 

(1, 0) x 5 1 0.3 0.30 0.7 

(1, 1) x 2, 10, 16, 27, 34 5 2.2 0.44 2.8 

(1, 2) x 8, 11, 20, 24, 31 5 3.9 0.78 1.1 

(2, 0) x 12, 21, 28, 36 4 2.2 0.55 1.8 

(2, 1) x 4, 14, 18, 23, 29, 33 6 4.2 0.70 1.8 

(2, 2) x 6, 9, 26 3 2.9 0.97 0.1 

Table 5 

Regions of GRFS model. 

Region �k 0 1 2 3 

R k ( ̃
 d ) U U − ([ x 1 ] R , [ x 5 ] R , [ x 15 ] R ) [ x 2 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 4 ] R , [ x 8 ] R 

R k ( ̃
 d ) ∅ [ x 5 ] R , [ x 6 ] R U − ([ x 1 ] R , [ x 2 ] R ) U − [ x 1 ] R 

pos k ( ̃
 d ) ∅ [ x 6 ] R [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 4 ] R , [ x 8 ] R 

neg k ( ̃
 d ) ∅ [ x 1 ] R , [ x 15 ] R [ x 1 ] R [ x 1 ] R 

Ubn k ( ̃
 d ) U [ x 2 ] R , [ x 3 ] R , [ x 4 ] R , [ x 8 ] R , [ x 12 ] R [ x 2 ] R ∅ 

Lbn k ( ̃
 d ) ∅ [ x 5 ] R [ x 3 ] R , [ x 5 ] R , [ x 15 ] R U − ([ x 1 ] R , [ x 4 ] R , [ x 8 ] R ) 

 

 

 

 

 

 

 

 

 

From Table 4 , by utilizing the GRFS model, we can get the upper and lower approximations of ˜ d with different grades

k = 0 , 1 , 2 , 3 in Table 5 . And then, we could calculate all the positive regions, negative regions, upper boundary regions and

lower boundary regions of ˜ d with k = 0 , 1 , 2 , 3 . 

From Tables 4 and 5 , it is easy to see that �y ∈ [ x 1 ] R ̃
 d (y ) = �y ∈ [ x 5 ] R ̃

 d (y ) = 0 . 3 . [ x 1 ] R and [ x 5 ] R are indiscernible and equal

in the GRFS model. However, [ x 1 ] R belongs to the negative region and [ x 5 ] R belongs to the lower boundary region with the

grades k = 1 , 2 , 3 . Since �y ∈ [ x 4 ] R (1 − ˜ d (y )) = �y ∈ [ x 12 ] R 
(1 − ˜ d (y )) = 1 . 8 , [ x 4 ] R and [ x 12 ] R should be indiscernible and equal in

the GRFS model. While [ x 4 ] R belongs to the positive region and [ x 12 ] R belongs to the lower boundary region with the grade

k = 3 . For grade k = 2 , [ x 4 ] R and [ x 6 ] R belong to the positive region and they should be indiscernible and equal in the GRFS

model. However, P ( ̃  d | [ x 4 ] R ) = 0 . 70 � = 0 . 97 = P ( ̃  d | [ x 6 ] R ) . So the GRFS model has some shortcomings sometimes. Therefore the

GRFS model can not discern a valuable description in some circumstances. 

In the Bayesian decision procedure, from the losses, one can give the values λi 1 , λi 2 , and i = 1 , 2 , 3 . We make some

changes to the loss function defined in [21] , and the parameters can be calculated as follows. 

Case 1. α + β = 1 . Consider the following loss function: 

λPP = 0 , λPN = 18 , 

λBP = 9 , λBN = 2 , 

λNP = 12 , λNN = 0 . 

Then we can get α = 0 . 6 , β = 0 . 4 ⇒ α + β = 1 . We can obtain the decision-theoretic upper and lower approximations. 

R (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

R (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . 

Accordingly, one can get the positive region, negative region and boundary region presented as follows: 

pos (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ;

neg (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 1 ] R ∪ [ x 5 ] R ∪ [ x 15 ] R ;

bn (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 12 ] R . 

Case 2. α + β < 1 . Consider the following loss function: 

λPP = 0 , λPN = 19 , 

λBP = 12 , λBN = 3 , 

λNP = 19 , λNN = 0 . 

Then we can get α = 0 . 5 , β = 0 . 3 ⇒ α + β < 1 . We can obtain the decision-theoretic upper and lower approximations. 

R (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

R (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R . 



274 B. Fan et al. / Information Sciences 378 (2017) 264–281 

Table 6 

Regions of DTRFS model. 

Region �( α, β) (0.5, 0.3) (0.6, 0.4) (0.7, 0.5) 

R ( ̃  d ) U − ([ x 1 ] R , [ x 5 ] R , [ x 15 ] R ) U − ([ x 1 ] R , [ x 5 ] R , [ x 15 ] R ) [ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R 
R ( ̃  d ) [ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 4 ] R , [ x 6 ] R , [ x 8 ] R [ x 4 ] R , [ x 6 ] R , [ x 8 ] R 
pos ( ̃  d ) [ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 4 ] R , [ x 6 ] R , [ x 8 ] R [ x 4 ] R , [ x 6 ] R , [ x 8 ] R 
neg( ̃  d ) [ x 1 ] R , [ x 5 ] R , [ x 15 ] R [ x 1 ] R , [ x 5 ] R , [ x 15 ] R [ x 1 ] R , [ x 2 ] R , [ x 5 ] R , [ x 15 ] R 
bn ( ̃  d ) [ x 2 ] R [ x 2 ] R , [ x 3 ] R , [ x 12 ] R [ x 3 ] R , [ x 12 ] R 

Table 7 

Regions of 
∧ 

-Dq-DTRFS and 
∨ 

-Dq-DTRFS models. 

Model Pos. region Neg. region Ubn. region Lbn. region 

Case 1 
∧ 

[ x 4 ] R , [ x 6 ] R , [ x 8 ] R [ x 1 ] R , [ x 3 ] R , [ x 5 ] R , [ x 15 ] R [ x 2 ] R , [ x 12 ] R ∅ ∨ 

[ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 1 ] R [ x 2 ] R [ x 5 ] R , [ x 15 ] R 
Case 2 

∧ 

[ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 1 ] R , [ x 5 ] R , [ x 15 ] R [ x 2 ] R [ x 3 ] R ∨ 

[ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 1 ] R [ x 2 ] R [ x 5 ] R , [ x 15 ] R 
Case 3 

∧ 

[ x 4 ] R , [ x 6 ] R , [ x 8 ] R [ x 1 ] R , [ x 2 ] R , [ x 3 ] R , [ x 5 ] R , [ x 12 ] R , [ x 15 ] R ∅ ∅ ∨ 

[ x 3 ] R , [ x 4 ] R , [ x 6 ] R , [ x 8 ] R , [ x 12 ] R [ x 1 ] R [ x 2 ] R [ x 5 ] R , [ x 15 ] R 

 

 

 

 

 

 

 

 

Accordingly, one can get the positive region, negative region and boundary region presented as follows: 

pos (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

neg (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 1 ] R ∪ [ x 5 ] R ∪ [ x 15 ] R ;

bn (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 2 ] R . 

Case 3. α + β > 1 . Consider the following loss function: 

λPP = 0 , λPN = 21 , 

λBP = 7 , λBN = 2 , 

λNP = 9 , λNN = 0 . 

Then we can get α = 0 . 7 , β = 0 . 5 ⇒ α + β > 1 . We can obtain the decision-theoretic upper and lower approximations. 

R (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

R (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . 

Accordingly, one can get the positive region, negative region and boundary region presented as follows: 

pos (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ;

neg (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 1 ] R ∪ [ x 2 ] R ∪ [ x 5 ] R ∪ [ x 15 ] R ;

bn (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 3 ] R ∪ [ x 12 ] R . 

All the regions of DTRFS model with three groups parameters ( α, β) are shown in Table 6 . 

From Tables 4 and 6 , it is easy to see that �y ∈ [ x 2 ] R ̃
 d (y ) = �y ∈ [ x 12 ] R ̃

 d (y ) = 2 . 2 . [ x 2 ] R and [ x 12 ] R are indiscernible and equal

in the DTRFS model. However, [ x 2 ] R belongs to the boundary region and [ x 12 ] R belongs to the positive region with the

threshold values α = 0 . 5 , β = 0 . 3 . And [ x 2 ] R belongs to the negative region and [ x 12 ] R belongs to the boundary region with

the threshold values α = 0 . 7 , β = 0 . 5 . For �y ∈ [ x 4 ] R (1 − ˜ d (y )) = �y ∈ [ x 12 ] R 
(1 − ˜ d (y )) = 1 . 8 , [ x 4 ] R and [ x 12 ] R should be indis-

cernible and equal in the DTRFS model. While [ x 4 ] R belongs to the positive region and [ x 12 ] R belongs to the boundary region

with the threshold values α = 0 . 6 , β = 0 . 4 or α = 0 . 7 , β = 0 . 5 . Especially, [ x 1 ] R , [ x 5 ] R and [ x 15 ] R all belong to the boundary

region, and one can not know whether these patients need to be treated as a flu. This is a serious deficiency of the DTRFS

model. So the DTRFS model can not discern a complete and valuable description in these circumstances. 

Therefore, neither DTRFS nor GRFS can discern a complete and valuable description in some circumstances. 

The description of 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models: 

According to the results which are computed previously, we will calculate the proposed models for Case 1, Case 2 and

Case 3 (see Table 7 ) in the following. Here, we choose the grade k = 2 for convenience. 

Case 1. The upper and lower approximations of 
∧ 

-Dq-DTRFS model are 

R (0 . 6 , 0 . 4) ∧ 2 ( ̃  d ) = [ x 2 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;
R (0 . 6 , 0 . 4) ∧ 2 ( ̃  d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . 
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We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∧ 

-Dq-DTRFS

model: 

pos ∧ 2 ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ;

neg ∧ 2 ( ̃
 d ) = [ x 1 ] R ∪ [ x 3 ] R ∪ [ x 5 ] R ∪ [ x 15 ] R ;

Ubn 

∧ 
2 ( ̃

 d ) = [ x 2 ] R ∪ [ x 12 ] R ;
Lbn 

∧ 
2 ( ̃

 d ) = ∅ . 
The upper and lower approximations of 

∨ 

-Dq-DTRFS model are 

R (0 . 6 , 0 . 4) ∨ 2 ( ̃  d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;
R (0 . 6 , 0 . 4) ∨ 2 ( ̃  d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 5 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ∪ [ x 15 ] R . 

We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∨ 

-Dq-DTRFS

model: 

pos ∨ 2 ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

neg ∨ 2 ( ̃
 d ) = [ x 1 ] R ;

Ubn 

∨ 
2 ( ̃

 d ) = [ x 2 ] R ;
Lbn 

∨ 
2 ( ̃

 d ) = [ x 5 ] R ∪ [ x 15 ] R . 

For α = 0 . 6 , β = 0 . 4 , k = 2 , these 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models have their own quantitative semantics for the

relative and absolute degree quantification. In 

∧ 

-Dq-DTRFS model, pos ∧ 
2 
(X ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R denotes the relative degree

of the patients belonging to cold patient set to exceed 0.6 and the external grade with respect to the heavy cold patient

set not to exceed 2. In 

∨ 

-Dq-DTRFS model, pos ∨ 
2 
(X ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R denotes the relative degree of the

patients belonging to cold patient set to be at least 0.4 and the internal grade with respect to the cold patient set to exceed

2. The same analysis result can be obtained for the negative region, upper boundary region and lower boundary region in

both two models with the thresholds α = 0 . 6 , β = 0 . 4 , and the grade k = 2 . 

Case 2. The upper and lower approximations of 
∧ 

-Dq-DTRFS model are 

R (0 . 5 , 0 . 3) ∧ 2 ( ̃  d ) = [ x 2 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;
R (0 . 5 , 0 . 3) ∧ 2 ( ̃  d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R . 

We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∧ 

-Dq-DTRFS

model: 

pos ∧ 2 ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

neg ∧ 2 ( ̃
 d ) = [ x 1 ] R ∪ [ x 5 ] R ∪ [ x 15 ] R ;

Ubn 

∧ 
2 ( ̃

 d ) = [ x 2 ] R ;
Lbn 

∧ 
2 ( ̃

 d ) = [ x 3 ] R . 

The upper and lower approximations of 
∨ 

-Dq-DTRFS model are 

R (0 . 5 , 0 . 3) ∨ 2 ( ̃  d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;
R (0 . 5 , 0 . 3) ∨ 2 ( ̃  d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 5 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ∪ [ x 15 ] R . 

We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∨ 

-Dq-DTRFS

model: 

pos ∨ 2 ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

neg ∨ 2 ( ̃
 d ) = [ x 1 ] R ;

Ubn 

∨ 
2 ( ̃

 d ) = [ x 2 ] R ;
Lbn 

∨ 
2 ( ̃

 d ) = [ x 5 ] R ∪ [ x 15 ] R . 

For α = 0 . 5 , β = 0 . 3 , k = 2 , these two models have their own quantitative semantics for the relative and absolute de-

gree quantification. In 

∧ 

-Dq-DTRFS model, pos ∧ 2 (X ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R denotes the relative degree of the patients

belonging to heavy cold patient set to exceed 0.5 and the external grade with respect to the cold patient set not to exceed

2. In 

∨ 

-Dq-DTRFS model, pos ∨ 
2 
(X ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R denotes the relative degree of the patients belonging

to heavy cold patient set to be at least 0.3 and the internal grade with respect to the cold patient set to exceed 2. The

same analysis result can be obtained for the negative region, upper boundary region and lower boundary region in both

two models with the thresholds α = 0 . 5 , β = 0 . 3 , and the grade k = 2 . 
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Case 3. The upper and lower approximations of 
∧ 

-Dq-DTRFS model are 

R (0 . 7 , 0 . 5) ∧ 2 ( ̃  d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ;
R (0 . 7 , 0 . 5) ∧ 2 ( ̃  d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . 

We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∧ 

-Dq-DTRFS

model: 

pos ∧ 2 ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ;

neg ∧ 2 ( ̃
 d ) = [ x 1 ] R ∪ [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 5 ] R ∪ [ x 12 ] R ∪ [ x 15 ] R ;

Ubn 

∧ 
2 ( ̃

 d ) = ∅;
Lbn 

∧ 
2 ( ̃

 d ) = ∅ . 
The upper and lower approximations of 

∨ 

-Dq-DTRFS model are: 

R (0 . 7 , 0 . 5) ∨ 2 ( ̃  d ) = [ x 2 ] R ∪ [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;
R (0 . 7 , 0 . 5) ∨ 2 ( ̃  d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 5 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ∪ [ x 15 ] R . 

We can also get the positive region, negative region, upper boundary region and lower boundary region of 
∨ 

-Dq-DTRFS

model: 

pos ∨ 2 ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R ;

neg ∨ 2 ( ̃
 d ) = [ x 1 ] R ;

Ubn 

∨ 
2 ( ̃

 d ) = [ x 2 ] R ;
Lbn 

∨ 
2 ( ̃

 d ) = [ x 5 ] R ∪ [ x 15 ] R . 

For α = 0 . 7 , β = 0 . 5 , k = 2 , in 

∧ 

-Dq-DTRFS model, pos ∧ 
2 
(X ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R denotes the relative degree of the pa-

tients belonging to cold patient set to exceed 0.7 and the external grade with respect to the cold patient set not to exceed 2.

In 

∨ 

-Dq-DTRFS model, pos ∨ 2 (X ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R denotes the relative degree of the patients belonging to

cold patient set to be at least 0.5 and the internal grade with respect to the cold patient set to exceed 2. The same analysis

result can be obtained for the negative region, upper boundary region and lower boundary region in both two models with

the thresholds α = 0 . 7 , β = 0 . 5 , and the grade k = 2 . 

From Tables 4 and 5 , it is easy to see that �y ∈ [ x 1 ] R ̃
 d (y ) = �y ∈ [ x 5 ] R ̃

 d (y ) = 0 . 3 . So [ x 1 ] R and [ x 5 ] R are indiscernible and equal

in the GRFS model. But we find that [ x 1 ] R and [ x 5 ] R belong to different regions. While in Table 7 , [ x 1 ] R and [ x 5 ] R belong to

the negative region based on the 
∧ 

-Dq-DTRFS model in cases 1, 2, and 3. This shows that [ x 1 ] R and [ x 5 ] R are indiscernible

to a certain conditions. 

From Table 5 , one can see the positive region of ˜ d is pos k ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R when k = 2 . That means these

four classes are accepted, and they are indiscernible in this grade. Meanwhile, according to Table 6 , it is easy to get that

for the threshold α = 0 . 6 , β = 0 . 4 the positive region is pos (0 . 6 , 0 . 4) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . For the threshold α = 0 . 5 , β =

0 . 3 the positive region is pos (0 . 5 , 0 . 3) ( ̃
 d ) = [ x 3 ] R ∪ [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R ∪ [ x 12 ] R . For the threshold α = 0 . 7 , β = 0 . 5 the positive

region is pos (0 . 7 , 0 . 5) ( ̃
 d ) = [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R . Based on these analyses, one can combine the regions of 

∧ 

-Dq-DTRFS and∨ 

-Dq-DTRFS models as shown in Table 7 . The regions which are [ x 4 ] R ∪ [ x 6 ] R ∪ [ x 8 ] R are always in positive region, namely,

the patients who have heavy cold under the given loss condition. When the relative information is considered, the [ x 12 ] R 
could be changed into lower boundary or upper boundary of 

∧ 

-Dq-DRTFS model. Also, For the 
∨ 

-Dq-DTRFS models of

cases 1, 2 and 3, [ x 1 ] R always belongs to the negative region, [ x 5 ] R and [ x 15 ] R always belong to the lower boundary region.

Most importantly, each patients can know whether they need to be treated as a flu with the minimum risk according

to the regions in Table 7 based on the Dq-DTRFS models. Therefore, the double-quantitative of the relative and absolute

information provides a valuable description in decision analysis fields. 

6. Numerical experiments 

In last section, we mainly introduced a medical example to illustrate the utilization of our 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS

models by comparing our models with DTRFS and GRFS models. In this section, we apply our two methods to solve a pattern

recognition problem in big data. In the era of big data, decision making about big data is a very important issue. In order

to make better decisions, it is imperative to handle the big data. To apply our 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models to big

data, the big data should satisfy the condition that all the attribute values should be known and the decision attribute values

should be in the range [0, 1]. That is to say, the information system should be a complete information system (with known

attribute values) and decision attribute should be a fuzzy set. So if the big data satisfy these two conditions, one can use our∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models to deal with the big data. And if the big data set is a complete information system

and the decision attribute values are not in the range [0, 1], then our models can be applied after the decision attribute
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Table 8 

Characteristics of testing date sets. 

Date set Samples Attributes 

W ine quality − red 1599 12 

W ine quality − white 4898 12 

Statlog ( Landsat Satellite ) 6435 37 

Statlog ( Shuttle ) 30 , 0 0 0 10 

Table 9 

Wine quality-red: The number of elements in each pattern with respect to different attribute sets. 

Patterns methods 1 2 3 4 5 6 7 8 9 10 11 

Pos . region 
∧ 

-Dq-DTRFS 219 295 75 56 52 52 52 52 52 52 52 ∨ 

-Dq-DTRFS 1598 1573 1571 1571 1571 1571 1571 1571 1571 1571 1571 

Excellent k - means 156 126 138 224 226 547 516 516 516 516 516 

Hierarchical Clustering 876 19 1 1 1 2 1 1 1 1 1 

Ubn . region 
∧ 

-Dq-DTRFS 1357 0 0 0 0 0 0 0 0 0 0 ∨ 

-Dq-DTRFS 0 0 0 0 0 0 0 0 0 0 0 

Good k - means 428 315 360 526 525 329 716 716 716 716 716 

Hierarchical Clustering 1 38 1 1 1 2 1 1 1 1 2 

Lbn . region 
∧ 

-Dq-DTRFS 21 1229 14 4 4 1462 1466 1466 1466 1466 1466 1466 1466 ∨ 

-Dq-DTRFS 1 24 26 26 26 26 26 26 26 26 26 

General k - means 362 584 530 76 76 613 265 265 265 265 265 

Hierarchical Clustering 721 1532 1587 1596 1595 1592 1596 1596 1596 1596 1595 

Neg . region 
∧ 

-Dq-DTRFS 2 75 80 81 81 81 81 81 81 81 81 ∨ 

-Dq-DTRFS 0 2 2 2 2 2 2 2 2 2 2 

Bad k - means 653 574 571 773 772 110 102 102 102 102 102 

Hierarchical Clustering 1 10 10 1 2 3 1 1 1 1 1 

Table 10 

Wine quality-white: The number of elements in each pattern with respect to different attribute sets. 

Patterns methods 1 2 3 4 5 6 7 8 9 10 11 

Pos . region 
∧ 

-Dq-DTRFS 29 2802 665 358 352 352 347 347 347 347 343 ∨ 

-Dq-DTRFS 4890 4754 4704 4698 4698 4698 4698 4698 4698 4698 4698 

Excellent k - means 1107 1769 1872 2114 2114 1872 1720 1720 1720 1720 1719 

Hierarchical Clustering 2111 259 1 1 1 1 1 2 2 1 1 

Ubn . region 
∧ 

-Dq-DTRFS 4844 1027 12 0 0 0 0 0 0 0 0 ∨ 

-Dq-DTRFS 6 70 16 0 0 0 0 0 0 0 0 

Good k - means 1316 1107 763 871 871 1255 992 992 992 992 978 

Hierarchical Clustering 1 2146 1 1 1 2 1 1 2 2 1 

Lbn . region 
∧ 

-Dq-DTRFS 20 896 3860 4177 4183 4183 4188 4188 4188 4188 4192 ∨ 

-Dq-DTRFS 2 37 105 124 124 124 124 124 124 124 124 

General k - means 2001 1474 1715 1373 1373 1346 1449 1449 1449 1449 14 4 4 

Hierarchical Clustering 2785 2023 4893 4892 4895 4894 4894 4894 4892 4894 4895 

Neg . region 
∧ 

-Dq-DTRFS 5 173 361 363 363 363 363 363 363 363 363 ∨ 

-Dq-DTRFS 0 37 73 76 76 76 76 76 76 76 76 

Bad k - means 474 548 548 540 540 425 737 737 737 737 757 

Hierarchical Clustering 1 470 3 4 1 1 2 1 2 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

values are normalized to the range [0, 1]. In this section, we will classify some real-life big data sets based on our 
∧ 

-

Dq-DTRFS and 

∨ 

-Dq-DTRFS models, using four real-life data sets available from the UCI databases. First we normalized the

decision attribute values to the range [0, 1]. Among the four data sets, the Statlog (Landsat Satellite) data have 6435 samples

and 37 attributes, the attribute set is relatively large. The Statlog(Shuttle) data have 30,0 0 0 samples and 10 attributes, the

sample set is relatively large. The characteristics of the data sets are summarized in Table 8 . 

From the view of pattern recognition, each data set is divided into four patterns. Tables 9 –12 show the number of el-

ements in each pattern with respect to different attribute sets using our two 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models and

k -means( k = 4 ) and hierarchical clustering methods. Our two 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models divide each data set

into positi v e region, upper boundary region , lower boundary region and negati v e region four patterns. While k -means and hier-

archical clustering methods divide each data set into excellent , good , general and bad four patterns. Figs. 1 –3 are obtained

based on Tables 9 –12 . 

In Fig. 1 a , b , c , d show the number of elements in positive region, upper boundary region, lower boundary region and

negative region with respect to different sizes of attribute sets using our 
∧ 

-Dq-DTRFS model. Similarly, e , f , g , h show the

number of elements in each region with respect to different sizes of attribute sets using our 
∨ 

-Dq-DTRFS model. Figs. 2 and

3 show the number of elements in each class with respect to different sizes of attribute sets using k -means and hierarchical
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Table 11 

Statlog (Landsat Satellite): The number of elements in each pattern with respect to different attribute sets. 

Patterns methods 4 8 12 16 20 24 28 32 36 

Pos . region 
∧ 

-Dq-DTRFS 864 18 0 0 0 0 0 0 0 ∨ 

-Dq-DTRFS 2793 2855 2841 2841 2841 2841 2841 2841 2841 

Excellent k - means 1782 1807 1841 1853 1817 1875 1787 1848 1838 

Hierarchical Clustering 1 1 2 1 1 1 1 1 1 

Ubn . region 
∧ 

-Dq-DTRFS 368 0 0 0 0 0 0 0 0 ∨ 

-Dq-DTRFS 521 0 0 0 0 0 0 0 0 

Good k - means 1783 1798 1779 1794 1800 1772 1805 1779 1774 

Hierarchical Clustering 1 1 1 1 1 1 1 1 1 

Lbn . region 
∧ 

-Dq-DTRFS 1443 2209 2215 2215 2215 2215 2215 2215 2215 ∨ 

-Dq-DTRFS 2093 3526 3584 3592 3594 3594 3594 3594 3594 

General k - means 2276 2236 2209 2184 2213 2184 2236 2199 2216 

Hierarchical Clustering 6432 6432 6431 6432 6432 6432 6432 6432 6432 

Neg . region 
∧ 

-Dq-DTRFS 3760 4208 4220 4220 4220 4220 4220 4220 4220 ∨ 

-Dq-DTRFS 1028 54 10 2 0 0 0 0 0 

Bad k - means 594 594 606 604 605 604 607 609 607 

Hierarchical Clustering 1 1 1 1 1 1 1 1 1 

Table 12 

Statlog (Shuttle): The number of elements in each pattern with respect to different attribute sets. 

Patterns methods 1 2 3 4 5 6 7 8 9 

Pos . region 
∧ 

-Dq-DTRFS 1702 1531 1629 1635 1834 12 0 0 0 ∨ 

-Dq-DTRFS 4775 6203 6270 6116 6376 6376 6376 6376 6376 

Excellent k - means 1697 1677 1677 1687 2724 5655 4337 5625 4177 

Hierarchical Clustering 14 , 903 23 , 566 1 1 1 1 1 1 1 

Ubn . region 
∧ 

-Dq-DTRFS 6009 5610 4632 3551 1653 0 0 0 0 ∨ 

-Dq-DTRFS 16 , 747 1633 692 739 0 0 0 0 0 

Good k - means 9082 9534 5298 8910 5797 8 8 8 8 

Hierarchical Clustering 1 1 1 1 1 1 1 1 5 

Lbn . region 
∧ 

-Dq-DTRFS 4 211 482 1465 2828 6303 6315 6315 6315 ∨ 

-Dq-DTRFS 6 166 1545 5221 7216 19 , 693 22 , 455 23 , 224 23 , 624 

General k - means 8355 7731 9348 5265 6041 3 3 3 3 

Hierarchical Clustering 15095 1749 29 , 987 29 , 997 29 , 997 29 , 997 29 , 997 29 , 996 29 , 990 

Neg . region 
∧ 

-Dq-DTRFS 22 , 285 22 , 648 23 , 257 23 , 349 23 , 685 23 , 685 23 , 685 23 , 685 23 , 685 ∨ 

-Dq-DTRFS 8472 21 , 998 21 , 493 17 , 924 16 , 408 3931 1169 400 0 

Bad k - means 10 , 866 11 , 058 13 , 677 14 , 138 15 , 438 24 , 334 25 , 652 24 , 364 25 , 812 

Hierarchical Clustering 1 4684 11 1 1 1 1 2 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clustering methods respectively. The X -axis represents the size of attribute set, from one attribute to all attributes. The Y -axis

represents the number of elements in each region versus attribute set. Each figure has four lines. 

From Fig. 1 , we find that the changes on the number of elements in each region are irregular in both 

∧ 

-Dq-DTRFS

and 

∨ 

-Dq-DTRFS models. It is because the definitions of upper approximations and lower approximations are irregular in

these two models. For example, in the 
∧ 

-Dq-DTRFS model, the logical conjunction double-quantitative upper and lower

approximations of fuzzy set ˜ A based on the relation R is defined as: R (α,β) ∧ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > max (k, β| [ x ] R | ) } ,

and R (α,β) ∧ k ( ̃  A ) = { x ∈ U | �y ∈ [ x ] R ̃
 A (y ) > max (| [ x ] R | − k, α| [ x ] R | ) . It is obvious that the equivalence classes get larger when

the size of attribute sets gets larger. That is to say [ x ] R gets larger when the attribute set increases from one attribute

to more attributes, �y ∈ [ x ] R ̃
 A (y ) and β|[ x ] R | get larger at the same time. So the size of �y ∈ [ x ] R ̃

 A (y ) and β|[ x ] R | can not be

determined even though the value of k is always equal to 2. And then the size of R (α,β) ∧ k ( ̃  A ) and R (α,β) ∧ k ( ̃  A ) also can not

be determined. So the positive region, negative region, upper boundary region and lower boundary region also can not be

determined based on the definition of each region. Since a , b , c , d show the number of elements in positive region, upper

boundary region, lower boundary region and negative region with respect to different sizes of attribute sets using our 
∧ 

-

Dq-DTRFS model, the changes on the number of elements in each region are irregular in a , b , c , d . While e , f , g , h show

the number of elements in each region with respect to different sizes of attribute sets using our 
∨ 

-Dq-DTRFS model, the

changes on the number of elements in each region are also irregular in e , f , g , h . Moreover, all the data sets can be classified

into different regions based on our 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS models. 

For these four methods, k - means method randomly chooses k points as the initial points, which poses a problem. The

problem is that there are different classification results of the same data set and which one to use is difficult to decide. This

is the biggest disadvantage of this approach. Hierarchical clustering mainly take into account of class distance and object

distance. One should take into account the risk theory in the decision-making process though there are some risks when

one makes decisions. While both of these two methods do not consider the factor of the cost or the risk. Our two 
∧ 

-Dq-
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Fig. 1. Dq-DTRFS: The number of elements in each region with respect to different attribute sets. 

Fig. 2. k -means: The number of elements in each class with respect to different attribute sets. 

Fig. 3. Hierarchical Clustering: The number of elements in each class with respect to different attribute sets. 

 

 

 

DTRFS and 

∨ 

-Dq-DTRFS models not only can divide data set into four patterns, but also can take into account of the risk

factor. 

7. Conclusions 

The relative and absolute quantitative information of the approximate space are two fundamental quantitative indexes,

which represent two distinct objective descriptors. The double quantification formed by adding the absolute quantitative
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information can improve the descriptive abilities of DTRFS model and expand their range of applicability. The proposed

models, 
∧ 

-Dq-DTRFS and 

∨ 

-Dq-DTRFS, perform a basic double quantification of the relative information and absolute in-

formation based on logical operation. These new models are directional expansions of Pawlak rough set model, satisfying

the quantitative completeness properties, and exhibiting strong double fault tolerance capabilities. This paper mainly inves-

tigates double quantification, namely the relative and absolute information by combining DTRFS and GRFS models together

with a fuzzy concept. Moreover, after proposing the decision rules containing both relative quantification and absolute quan-

tification in two types of models, the inner relationships between these two models are studied. In this article, we provide

an example on medical diagnosis and experiment data sets downloaded from UCI to illustrate and support our proposed

models. In future work, several aspects of these two models will be investigated and studied, which include the uncertainty

measures and other properties of these models with respect to the concepts and parameters setting. 
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